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Abstract. A generalization of Wintgen’s method for classifying space-group representations is
made to enable the infinite set of co-representations of magnetic space groups to be classified and
enumerated. Using this method, all special points, lines and planes in the Brillouin zone model
for magnetic crystals are identified. Arithmetic crystal-classes of magnetic space groups are
introduced, fully listed and used to classify magnetic space groups and their co-representations.
A version of Burnside’s theorem adapted to co-representations is constructed and used to solve
completely the enumeration problem of co-representations of magnetic space groups.

1. Introduction

The aim of this paper is to present a systematic way of classifying and enumerating the
irreducible co-representations of magnetic space groups. These groups [1, 2], which contain
both unitary and anti-unitary operations, describe the symmetry of paramagnetic crystals
and also a large class of magnetically-ordered crystals. As abstract groups isomorphic to
space groups, magnetic space groups do have irreducible representations but these are not
themselves relevant to most physical applications since wavefunctions in magnetic crystals
transform as co-representations [3] rather than as ordinary, linear representations. As in
the case of the irreducible representations of ordinary space groups, the irreducible co-
representations of magnetic space groups are constructed by induction from the irreducible
representations of the invariant (or normal) subgroup of three-dimensional translations. This
translational group is an Abelian group and its irreducible representations are exponentials
of the type &** defined by three parameter§y, ¢, r}, which can be regarded as the
components of a wave vectdr = (p,q,r) in the reciprocal space. The other vector,

t = (vy, vy, v;), IS the vector of pure translations with integer componenis,, v, and is
defined in the real (direct) space. The translational group is of infinite order and hence the
irreducible representations and co-representations of the space groups are infinite in number
yet they may be classified into a finite number of strata of inequivalent translational types.
With the exception of the trivial case of the invariant strata, the strata are to be regarded as
infinite sets of irreducible representations any one of which can be specified by choosing
specific values for any parametéys ¢, r) associated with the stratum. There are four types

of translational strata of irreducible representations. ikiariant strata are discrete, finite in
number and correspond to special points in the Brillouin zone model.ufilvariant strata
depend on one parameter and correspond to lines of special pointsdividrant strata
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depend on two parameters and correspond to planes while the siivglgant stratum
depends on three parameters and corresponds to all general points in the Brillouin zone
model. The range of each parameter is finite and may be broken when special values exist.
In such cases the irreducible representation splits into a sum of irreducible representations
of lower dimensions which belong to strata specified by fewer parameters (i.e. have fewer
‘degrees of freedom’). The individual representations are ‘full-group representations’ and
would be constructed from the ‘little-group representations’ of the Brillouin zone model by
constructing an orbit (or ‘star’) of equivalent wave vectérsThe orbit containing the star

of the wave vectok contains the little-group representatioff'&* and all representations
ekt characterized by different wave vectdes (known as ‘rays’ in the star) satisfying

the conditionk’ = R;k whereR; is a point-group operation of the space group.

The problem of the classification and enumeration of the translational strata of the
irreducible representations of 230 classical space groups was solved by Wintgen [4] and the
resulting principles were used by Slater [5] in his presentation of parts of the little-group
character tables of 20 important space groups. Wintgen's contribution was to recognize that
the problem of finding all such strata in a three-dimensional reciprocal space was isomorphic
to the direct-space problem started by Niggli [6] and solved completely by Wyckoff [7] who
found all strata of sets of inequivalent points for every space group. In reciprocal space, Jan
[8] studied the symmetries of Fermi surfaces while Aroyo and Wondratschek [9] recently
considered the asymmetric units geometrically.

The essence of Wintgen's method is that the space used to classify the orbits of
irreducible representations was not necessarily isomorphic to that of the space group being
studied. The space group used to classify the translational strata became known as the
‘reciprocal space group’ which was in only 47 cases isomorphic to the original space group.
The reciprocal space group has the property of always belonging to one of the 73 types
of symmorphic space groups, i.e. one of those space-group types which contain no free
elements other than pure translations. In three-dimensional space, each arithmetic crystal-
class [10] contains only one symmorphic space group and hence these 73 symmorphic space
groups may be used to characterize the classes.

The problem of the classification of space-group representations into translational strata
is one which depends on the arithmetic crystal-class to which the space group belongs.
Confusion has been caused in the literature by regarding it as a problem which depends on
the arithmetic crystal-class characterizing the holomorph of the crystal system yet having
the same lattice. This approach underlies the notation introduced by Bouekaérill]
which has now become standard for the labelling of translational strata of space-group
representations. Wintgen's work was not, however, used in some extensive computations
of little-group character tables [12,13] nor in associated work [14]. These tables suffer
from omissions (divariant and trivariant strata and occasionally certain invariant strata are
not included) and also have extraneous entries (parts of univariant or divariant strata are
listed as invariant strata for non-special values of the parameters) as explained by Boyle
[15].

In this paper we generalize Wintgen’s method to magnetic space groups by introducing in
section 2 an auxiliary non-magnetic space group which allows one to classify the irreducible
co-representations and identify the symmetry points in the Brillouin zone of magnetic
crystals. The classification of space-group co-representations depends on the arithmetic
crystal-class of magnetic space groups which we define in section 3. A complete list of such
classes for all magnetic space-group types is given. In section 4 we consider the problem
of enumerating the irreducible co-representations within a given translational stratum and
present a new extension of a theorem of Burnside which enables it to be applied to co-
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representations. Together with the generalization of Wintgen's method, the extension of
Burnside’s theorem enables one to solve completely the problem of the classification and
enumeration of the irreducible co-representations of magnetic space groups. The important
aspects of the theory are illustrated by the examples given in section 5.

The term ‘co-representations’ in this paper will always be taken to mean ‘full-group
co-representations’ and never ‘little-group co-representations’ [16, 17].

2. Classification of the co-representations of magnetic space groups

A magnetic space grouff contains a halving non-magnetic subgratpof unitary spatial-
symmetry operationsy; € H (i = 1,2,...,|H|), where|H| is the order of the group
H. We may writeM = H + agH where the factoug = 6u’ = v’ is a product of time
inversion® [18] with a spatial operation’. It is well known thaté commutes with all
spatial operations.

As an abstract groupy is isomorphic to a non-magnetic grodp The operation:’ is
the identity whenM is a ‘grey’ group, i.eM = H +6 H, but belongs to the coséG — H)
when M is a ‘black-and-white’ group, i.eM = H + 6(G — H).

According to a theorem of Hermann [19], the space grddipmust be either a
zellengleicheg[19] (or translationengleichg20]) or a klassengleichesubgroup ofG. We
shall accordingly refer to the magnetic space gréfips beingzellengleichor klassengleich
depending on the type of halving subgrotp

The operation of time inversiorq, is anti-unitary as also are the factag and all
elements belonging to the cosegH. Such elements cause complex conjugation of the
wavefunctions and consequently the latter transform as co-representations rather than as
ordinary linear representations in magnetic crystals where the symmetry is described by a
magnetic group.

Co-representations were introduced in physics by Wigner [3]. They can be defined in
terms of a set of matrice®) = {D(u;), D(a;) | u;€H, a;€agH}, which satisfy a generalized
homomorphism rule of the type

D(g1)D(g2)** = D(g182) Vg1, 82 € M 1)

for all elementsg; ( = 1,2,...,|M]|) of the groupM. The superscripg; only implies
complex conjugation whep; is an anti-unitary operation, i.@; € agH, but not wheng;

is a unitary operation, i.eg; € H. Equation (1) also shows that co-representations are a
particular type of the semi-linear representations originally defined by Nakayama and Shoda
[21].

Wigner [3] suggested a method for constructing irreducible co-representations by
induction from the irreducible representations,= {A(u;) | u; € H,i = 1,2,...,|H|},
of the halving non-magnetic subgroup into M. He also classified the irreducible co-
representations as belonging to tyes or ¢ which can be determined using Dimmock
and Wheeler's character test [22].

For a magnetic space groud, the infinite set of irreducible co-representations can
be further classified into inequivalent translational strata by constructing orbits of the
translational representationg”®* in M. These orbits may be superorbits of those in
the halving space grouff due to the Wigner induction described above.
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2.1. Auxiliary space group

The construction of translational strata of co-representations of the magnetic group involves
a procedure similar to that used in the corresponding construction for representations of an
ordinary space group but includes the effect of both the unitary point-group generators and
the anti-unitary factoug. The effect of unitary operations is the same as in the ordinary
space group and is well known, while the effect of the anti-unitary faggoe »’'6 may

be regarded as time inversighwhich produces complex conjugation of the exponential
function followed by the unitary generatof:

a0e27'rik~t — (u/e)e,erik-t — u/e—27rik-t — u/e,erik-(—t). (2)

Time inversion is therefore tantamount to any operation which reverses the sign of the
translational vectot in direct space and is, therefore, in this particular problem, equivalent
to that of space inversion in the origif§,|000} = {xyz|000}, i.e.

0e¥ 1kt ~ (5,]000,e7* . ()

The orbits of irreducible co-representations of magnetic space groups are therefore
identical to the orbits of the irreducible representations of a non-magnetic auxiliary space
group A which can be constructed for any magnetic gradifpy replacing the time inversion
by space inversion in the origin wherever it appears as a factor in the element of the magnetic
group.

In the case of grey groups,

H + {S,|000H when H is hon-centrosymmetric

A~ 4
H when H already contains a centre of symmetry. @

In the case otellengleicherblack-and-white groups, replacementéoby {S,|000} gives
H + {S2|000(G — H) when bothG and H are non-centrosymmetric

A~{ H whenG but not H is centrosymmetric (5)
G when bothG and H are centrosymmetric.

In the case oklassengleicheblack-and-white groups, replacementtoby {S,|000} gives

A H + {S,|000,(G — H) when bothG and H are non-centrosymmetric ©)
| H when bothG and H are centrosymmetric.

Equations (4)—(6) clearly show that the auxiliary space gréumntains space inversion
for all grey groups, alklassengleicheblack-and-white groups and for thogellengleichen
black-and-white groups with centrosymmetric subgrdiip

Then, following Wintgen [4], we determine the reciprocal space g the auxiliary
group A. R is always isomorphic to one of the 73 symmorphic space-group types. The
strata of Wyckoff sets of points of the reciprocal groRpare precisely those required for
determining the inequivalent translational strata of both the irreducible representations of the
non-magnetic groupt and the irreducible co-representations of the magnetic giéupVe
have used the Wyckoff sets of points which are listed in the various editidmseshational
Tables[23, 24, 20] to determine the inequivalent orbits of irreducible co-representations for
all 1421 magnetic space groups. Comparison of our results with the corresponding little-
group results published in the tables of Miller and Love [12] yields a complete explanation
of their systems of notation and indicates which co-representations were omitted by them
and which were included more than once albeit under different names. Typical examples
are given in section 5.
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The reciprocal space grougs of all magnetic space groupd are listed in section 3.
Since the reciprocal group of a group containing space inversion is centrosymmetric itself,
R is always centrosymmetric for grey groups addssengleicheblack-and-white groups,
while for 49 classes ofellengleicherblack-and-white symmetrieR does not contain the
space inversion. This latter result is in full agreement with Cracknell [25,26] who, when
studying the symmetry of the energy functions in magnetic crystals, also found that they
are described by symmorphic, non-magnetic groups and listed the 49 cases where there is
no centre of symmetry.

2.2. Special symmetries in the Brillouin zones of magnetic crystals

A traditional approach to the discussion of energies and wavefunctions in crystals has
involved the first Brillouin zone [27] which is a primitive unit cell of the reciprocal space.

It is usually constructed in a way similar to the Wigner—Seitz cell of direct space, i.e. by
choosing as origin any one of the lattice points and drawing the planes that perpendicularly
bisect the lines joining this point to its nearest neighbours. It contains the wave vector
k = 0 and all wave vectorg& and —k which satisfy the equations of planes defining its
boundariesk-g; = %gi -gi, where thegg; (i = 1, 2, 3) are the reciprocal-lattice vectors. The
advantage of choosing the Wigner—Seitz cell is that its cektre Q) necessarily possesses

the full point-group symmetry of the reciprocal lattice. However, for crystals belonging to
low-symmetry (i.e. triclinic and monoclinic) crystal systems, the geometrical construction
of the Wigner—Seitz unit cell of reciprocal space is usually exceedingly tedious and this cell
is replaced by a parallelepiped constructed using the reciprocal-lattice vegtdrg].

Whichever unit cell is chosen, point symmetries within the lattice are limited by the
actual point group and not by the holosymmetric point group of the reciprocal lattice, as has
often been considered in the literature [12]. It should be remembered that whereas in direct
space there are 230 types of space groups which are relevant to non-magnetic crystals, only
73 of these, namely the symmorphic groups, are also relevant to physical applications of
the reciprocal space.

Because the reciprocal lattice is discrete, there are in principle special points, lines and
planes where the local (or site) symmetry is higher than that of immediately adjacent points.
We shall refer to these points as having ‘special symmetries’ while points which have only
translational symmetry are known as ‘general points’. The significance of the existence
of special points, lines and planes is that they provide a basis for classifying translational
symmetries in direct space and hence a basis for classifying the translational strata of
irreducible representations of the space group. What is even more important for quantum-
mechanical applications is that the special symmetries provide a classification scheme for
eigenfunctions and energies.

All inequivalent special symmetries in the first Brillouin zone of non-magnetic crystals
can easily be found using Wintgen's method. All we need to do is to identify the reciprocal
space groupRk of the space group under consideration. The Wyckoff sets of poini® of
will describe precisely the special points, lines and planes in the Brillouin zone. The latter
are, however, labelled by using an appropriate extension of the standard notation introduced
in [11].

The Brillouin zone of magnetic crystals can be constructed geometrically using the
reciprocal-lattice vectorg; (i = 1, 2, 3), defined by Gibbs’ formulae. These are derived
from the lattice vectors of the magnetic unit cell in the real space. Instructive examples
of such geometrical constructions are given in [17]. Account needs to be taken of those
anti-ferromagnetic crystals where the unit cell is of black-and-white type [29, 30] in which
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case a basic translation is doubled. Hence one or more reciprocal-lattice vectors can be
shorter and the size and shape of the Brillouin zone may change when the crystal passes
from a paramagnetic to an anti-ferromagnetic phase.

However, the concept of the common reciprocal space g®ugdlows us to choose
the Brillouin zone of a magnetic space grop to be isomorphic to the Brillouin zone
of the auxiliary non-magnetic group. The main advantage of this approach is that we
use Brillouin zones which are already well known and their special symmetries are well
identified by the Wyckoff sets of points a&.

From equations (4)—(6) and associated discussion it is clear that the Brillouin zone
needed to describe the translational symmetry of the magnetic gkouwill always
be that of a centrosymmetric space group unless the halving non-magnetic Hrasip
non-centrosymmetric and/or the cosét — H) does not contain any purely translational
operations. In section 5 an example of a suitable choice of a Brillouin zone for the anti-
ferromagnetic phase of solid oxygen is given.

3. Arithmetic crystal-classes of magnetic space groups

Arithmetic crystal-classes form the basis for classifying space groups. To provide a formal
definition one considers the automorphism growdpL (3, Z), of the three-dimensional
translation group relevant to a lattice having an origin which is left invariant by the
automorphisms. This group has an infinite number of finite subgroups which belong to
73 conjugacy classes. A space group is describable as an extension of its normal Abelian
subgroup of translations by a finite subgroup®f.(3, Z). The details of the composition

of the elements in terms of the automorphism (point-group part) and a translation are
determined by the cohomology of the extension. All space groups generated using a finite
automorphism group from a given conjugacy class of subgroupsof3, Z) are said to
belong to the same arithmetic crystal-class.

In practice, it is simpler to consider an arithmetic crystal-class of space groups as
consisting of all space groups having the same geometric crystal-class (or point group),
the same lattice and the same setting of the point-group parts of the symmetry elements
with respect to that lattice. This definition will now be applied to both non-magnetic
and magnetic space groups. As already mentioned, each arithmetic crystal-class of three-
dimensional crystallographic space groups contains just one symmorphic space group. This
latter group is used to characterize the class and hence there are 73 arithmetic crystal-classes
for the 230 crystallographic space-group types.

A formal definition of a magnetic arithmetic crystal-class can be constructed by
considering all the different possible conjugacy classes of finite subgroups of the
automorphism groups of the three-dimensional magnetic translation groups. These
automorphism groups were identified by Janner [28] as subgroups of index¢GZ &, Z)
in the case of th&klassengleichemagnetic groups and'L(3, Z) itself in the case of the
zellengleichemagnetic groups. The construction of the magnetic space groups then follows
in a manner similar to that described for the ordinary space groups. In a simpler approach,
we recognize that there are significant differences in both the geometric crystal-classes and
the lattices. Compared with the 32 geometric crystal-classes of ordinary crystallographic
point groups, there are 90 geometric crystal-classes of magnetic point groups made up of 32
grey and 58 black-and-white point groups. There are 36 types of magnetic lattices of which
14 coincide with the ordinary Bravais lattice-types while the other 22 are black-and-white
types, i.e. the generators include a black-and-white non-primitive translation. The full list
of magnetic lattices was produced by Belewal [29, 30] whose notation will be used to
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distinguish between the black-and-white lattices. In this system a capital letter without a
subscript denotes a Bravais lattice-type while a capital letter with a subscript denotes one
of the black-and-white lattice-types. The role of the subscript is to give information about
the coloured translation. Thus the unit cell of the monoclinic black-and-white la®ide

based on that of the primitive monoclinic lattice, with white points at the apices but, in
addition, black points at the midpoints of those edges parallel to the twofold axis.

Each arithmetic crystal-class of magnetic space groups consists of all magnetic space
groups having the same geometric magnetic crystal-class, the same magnetic lattice and an
equivalent setting of the point-group parts of the symmetry elements with respect to that
lattice. We have thus classified all 1191 black-and-white and 230 grey magnetic space-
group types into 331 magnetic arithmetic crystal-classes. In detail, thedl&hgleichen
dichromatic groups belong to 148 magnetic arithmetic crystal-classes while the 517
klassengleichedichromatic groups belong to 110 such classes. Like the 230 ordinary space
groups, the 230 grey groups belong to 73 arithmetic crystal-classes but unlike the ordinary
groups these magnetic arithmetic crystal-classes only correspond to the 24 centrosymmetric
reciprocal space groups. The complete list of arithmetic crystal-classes of non-magnetic and
magnetic space groups is presented in tables 1-7.

Table 1. Arithmetic crystal-classes of triclinic space groups.

Non-magnetic
Reciprocal arithmetic Magnetic arithmetic
space group  crystal-classes  crystal-classes

Pl=c} 1P ={c}) e )
Pl=S53 1P = (s} 1P, 1P, 1P, 11 P

Table 2. Arithmetic crystal-classes of monoclinic space groups.

Non-magnetic

Reciprocal arithmetic Magnetic arithmetic
space group crystal-classes crystal-classes
pP2=C} 2P = (C3?) m'P,2/m'P

c2=C3 2C = {C3) m'C,2/m'C
szC%h sz{Cll,’IZ} 2P, 2 /mP
Cm=C3, mC = {C31) 2C,2/mC

2/m'P,2P,, 2Py, 2Pc,mP,, mP,, mPc,
2/mP,,2/mPy,2/mPc,2Y P, m1 P,2/ml' P
2/m'C,2C.,2C4, mC.,mCq, 2/mC;, 2/mC,,
21Cc,m1'C,2/m1'C

P2/m=C},  2/mP ={Cy*"*®%)

Cc2/m=C3, 2/mC={(C3%)

To determine the magnetic arithmetic crystal-class we use rules similar to those applied
to crystallographic space groups [20]. The differences are due to the coloured generators
(identifiable by the occurrence of a prime in the Hermann—Mauguin-type symbol for the
magnetic group) and to the coloured lattice-type (identifiable by the presence of a subscript
to the capital letter denoting the centring type of the Bravais lattice). For example the
black-and-white grouf’s, (C2) = P2;/c’ belongs to the magnetic arithmetic clagsn2P,
the groupC3(C3) = P,2; belongs to the class/ while the groupC3(C3) = P,2 belongs
to the class 2,.
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Table 3. Arithmetic crystal-classes of orthombic space groups.

Reciprocal
space group

Non-magnetic
arithmetic
crystal-classes

Magnetic arithmetic
crystal-classes

P222= D% 222P = {D%74} m'm'2P, m'm'm’' P

C222= DS 222C = {D3°) m'm'2C, m'm'm'C, m'm'2A
F222= D} 2221 = {D8°) m'm' 21, m'm'm' [

1222= D§ 222F = (D]} m'm'2F, m'm'm' F

Pmm2 = Czlv mm2P = {C21;10} 222P,m'm2 P, m'mmP
Cmm2 = Czll:} mm2C = {C21U1713} 2'22C, mmm'C,m'm2 A

Amm2=C3  mm2A = {Czlg,j”}
Fmm2=C3®  mm2l = (C3>%3)
Imm2=C35°  mm2F = {C;>"%)

222'C,m'm2' C,m'mmC,mm'2 A
2221, m'm2'I, m'mml

222F, m'm2 F,m'mmF
m'm'mP,222P,, 222Pc, 222P;

mm2P., mm2P,, mm2Pc, mm2P4, mm2Py,

Pmmm = D%h mmmP = {Déh_le}

mmm P,, mmm Pc, mmm Py,
2221 P, mm21 P, mmm1 P.
m'm'mC,mm'm'C, 222C.., 222C,, 222C 4,

mm2C., mm2C,, mm2C 5, mm2A,, mm2A.,

Cmmm = D%}? mmmC = {D%Zfzz}

mm2Ac, mmmCe, mmmC,, mmmCa,
2221C, mm2YC, mm21Y A, mmm1'C.
m'm'mlI, 2221., mm21., mm2l,, mmml,,
22211, mm?211, mmm1'1.
o304 m'm'mF, 222F;, mm2F,, mmmF,
mmmF = {D3,"""} , ,
2221F, mm21 F, mmm1 F.

Fmmm = Dg}? mmml = {Dgfzg}

— n25
Immm = D3}

In each table the first column contains the reciprocal space group which characterizes
both the non-magnetic and the magnetic crystal-classes given in the second and third
columns on the same line in the table. Both Hermann—Mauguin and Scheenflies notations are
used for convenience. The arithmetic crystal-classes of the non-magnetic groups are labelled
using de Wolff's adaptation of the Hermann—Mauguin-type symbols. For convenience, the
list of space groups belonging to that class is given in Schoenflies notation in braces. The
arithmetic crystal-classes of magnetic space groups are labelled in a de Wolff-type adaptation
of the notation of Belowet al.

The arithmetic crystal-classes of magnetic space groups are very important for
classifying the translational strata of irreducible co-representations. Deriving the auxiliary
non-magnetic group of each magnetic space group and its corresponding reciprocal group
as described in section 2, we reached the conclusion that a given reciprocal space group
characterizes an arithmetic crystal-class of hon-magnetic space groups as well as up to 23
(depending on the case) arithmetic crystal-classes of magnetic space groups. We can then
categorize magnetic arithmetic crystal-classes according to their reciprocal space group.

4. Adaptation of a theorem of Burnside to co-representations and their enumeration

Once the translational strata of irreducible co-representations have been determined, the
inequivalent types of irreducible co-representations contained within each stratum have to be
enumerated. This can be done in a way similar to that used for space-group representations,
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Table 4. Arithmetic crystal-classes of tetragonal space groups.

Non-magnetic
arithmetic
crystal-classes

Magnetic arithmetic
crystal-classes

Reciprocal
space group
P4=C}
14=C3
Pi=S;
14=52
P4/m = C%h
14/m = Cz?h
P422= D}
1422= DY
Pdmm = C},
I4mm = Ci’u
P42m = D},
Pa4m2 = D3,
14m2 = D3,
142m = D}

P4/mmm = Dih

14/mmm = Di,z

4P = {C; %
41 = (378
4P = (S})

a1 = (83)
4/mP = {C5 ™M
4/ml = (C5%)
422P = {D} 8
4221 = (D310

4mmP = {(Cy, %)
dmml = (C3,*?)
42npP = (D3 %)
4m2P = {D3;%)
42m1 = (D73

dm2l = {Dy°)

4/mmmP = {Djh_le}

4/mmml = {D}Zfzo}

4p 4/m'P

41,4/m'I

4p .4 /m'P

414 /m'l

4/mP, AP, 4P., 4/mP., 4Pc, 4Pc, 4/m P,
4P;, AP;, 4/mP;, 41 P, 41 P, 4/m1 P.

4 /ml Al 4L, &/ml., AV1, 401, 4/m1'1
An'm' P, 42m' P, 4m'2P, 4/m'm'm’' P
Am'm' I, 42m' I, ¥m'21, 4/m'm'm’ I

422 P, 42mP,&m2 P, 4/m' mmP

4221, 42ml, &m2'1,4/m'mml

422P, Am'mP,4m'2 P, 4 /m'm'mP
422P Amm'P,42m' P, &4 /m'mm’ P

4221, 4m'mI, 4m'2 1,4 Jm'm'ml

4221, ¥mm'I,42m'I, & Jm'mm’ I

4 /mm'mP, 4 /mmm'P,4/mm'm’'P,

422P. AmmP,, 42mP,, 4m2P., 4/ mmm P,
422P¢, 4mm P, 42m Pc, ZlmZPC, 4/mmm Pc,
422P;, Amm Py, 42m Py, 4m2P;, 4/mmm Py,
4221P, 4mm1 P, 42m1' P, 4m21 P, 4/mmm1’ P.
A /mm'mI, & Jmmm'I, 4/mm'm’I,

4221, 4mml,., 42ml., 4m2I., 4/ mmm]I.,
42211, 4mm2'1, 42m1'1, 4m21 1, 4/ mmm1' 1.

i.e. by using an extension of the theorem of Burnside [31] which states that the sum of the

Table 5. Arithmetic crystal-classes of trigonal space groups.

Reciprocal
space group

Non-magnetic
arithmetic

crystal-classes

Magnetic arithmetic
crystal-classes

P3= C3l
R3= Cg
P3= Sé
R3= Sé
P312= D}
P321= D?
R32= D}
P3ml=C3
P31m = C3
R3m = C3,
P31m = D},
P3ml= ng
R3m = D3,

3P ={Cc5%
3R={CH
3P = (s}
3R = {2}

321P = (D*Y)
312P = (D33
32R = {D}}
3P = {C3Y
3mlP = (C3Y)
3mR = {C3°)
3mlP = (D3}
3P = (D3f)
3mR = {D3,)

3p

3R

3pP.,3P.,31P,31P

3R;,3R;,31R,31R

3m'1P,3m'1P

31m'P,31m’'P

3m'R,3m'R

312P,31mP

321P,3m1P

32R,3mR

3m'1P, 321P,, 3m1P,, 3m1P., 321 P, 3m1 P,3m1' P
31m’' P, 312P,, 31mP,, 31m P., 3Y2P,3YmP,31mP
3m'R,32R;,3mR;,3mR;, 321R, 3m1' R, 3m1'R
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Table 6. Arithmetic crystal-classes of hexagonal space groups.

Non-magnetic

Reciprocal arithmetic Magnetic arithmetic
space group crystal-classes crystal-classes
P6=C} 6P = {Cg %) 6P, 6/m'P
P6=Cj, 6P ={C3,} 6P,6/mP
P6/m = C§, 6/mP = (Cg?) 6'/m'P, 6P, 6P.,6/mP,,61P,61P,6/ml'P
P622= D} 622P = {D{ ) 6m'm’' P, 6'm'2P, &2m’' P
P6mm = Cév 6mmP = {Cév_4} 622 P, 6m2 P,62m' P, 6/m'mmP
Pém2 =D}, 62nP = (D3 622 P,6m'mP, 6m'2 P, 6 /mm'mP
Pé2m = D3, 6m2P = {D3?) 622P, 6'mm' P, 62m' P, 6 /mmm’ P
6 /m'm'mP,6 /m'mm'P,6/mm'm' P,6/m'm'm'P,
P6/mmm = Déh 6/mmm = {Dé;“} 622P,, 6mm P, 6m2P., 62m P,, 6/mmmP,,

6221 P, 6mm1 P,6m21 P, 62m1’ P, 6/mmm1 P.

Table 7. Arithmetic crystal-classes of cubic space groups.

Non-magnetic

Reciprocal arithmetic Magnetic arithmetic

space group crystal-classes crystal-classes

p23=T1 23P = (T1%) m'3P

F23=T? 231 = (T35} m’'31

123=T13 23F = {T?} m'3F

Pm3=T} m3P = {T;"26) 23P;, m3P;, 23 P, m3 P

Fm3=T} m3I = (17} 231, m31

Im3=Tp m3F = {T}%) 23F,, m3F,, 23 F,m3F

P432= 01 432P = {01267y 43m’ P, m'3m’ P

F432= 08 4321 = {058} A3m' 1, m'3m'l

1432= 0° 432F = {034 &3m'F, m'3m’' F

PA3n =T} 43P = (T} 432 P, m'3mP

F43n =T? 43n1 = {T;°) 4321, m'3ml

143n = T3 43nF = (T2 432F, m'3mF

Pm3m = O;} m3mP = {O,;L*4} m3m' P, 432P;, 43m P;, m3mP;, 432P, 43m P, m3m P
Fm3m = 0,? m3ml = {O,?‘lo} m3m'l, 4321, 43ml, m3ml

Im3m = 0,? m3mF = {0,?_8} m3m'F, 432F,, 43nF,, m3mF,, 432F, 43mF, m3mF

squares of the dimensions of the irreducible representations of a group is equal to the order
of the group. However, space groups are infinite groups and hence direct application of
Burnside’s theorem is inappropriate.

Furthermore, in its original form Burnside’'s theorem cannot be applied directly to
magnetic groups as it is not valid for co-representations. To adapt this theorem to co-
representations the possible types of relationship between the co-representations of the
magnetic group and the irreducible representations of the non-magnetic halving subgroup
are relevant. These can be summarized by the following correlation table in bhate
co-representations of the magnetic grot, while A(u) and A(u) = A(a(;luao)* # Au)
are ordinary representations of the subgrotip,
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M H
‘Do Aa
bDp  2Ag

‘D, A, @A,

These three splitting patterns respectively correspond to Wigner's typds and
¢ [3]. The big difference between the correlation of co-representations with ordinary
representations of the halving subgroup and correlations between ordinary representations
of ordinary, non-magnetic, groups lies in the restriction that a given representstioh
H canonly derive by subduction from aingle co-representatiorD; of M and not from
one or two such co-representations as the Frobenius reciprocity theorem would suggest for
ordinary representations.
Writing Burnside’s theorem in the form
> 1A = |H| @)
i=1
where|A;| is the dimension ofA;, the complete set of irreducible representations &f
can be partitioned into three according to whether the irreducible representation is obtained
by subduction from a type, typeb or typec co-representation a¥/. Given that the three
splitting patterns, respectively, imply the relationship®,| = |A,l, [°’Dg| = 2|A4| and
I°D,| = 2|A,| = 2|A,| and thatA, # A, |A;|? can be replaced in equation (7) by the
following combination of|D;|? terms which has coefficients which vary with the Wigner
type:

1 m n
SID P+ 3D IPDslP+ 3> 1D, P = |H| = }|M]| ®)
a=1 =1 y=1

wherel + m + 2n is equal to the total number of irreducible representations @f. This
modified form of Burnside’s theorem was tested on all 90 magnetic point groups and their
irreducible co-representations were found to satisfy it without exception.

The co-representations of magnetic space groups will also obey this rule but it is
of little practical value in its present form because the numbeosf irreducible co-
representations is infinite. However, Boyle found in a study of the completeness problem
in the definition of projective representations that Burnside’s formula applied to each class
of projective representations separately and hence the formula applied to the double-valued
representations of a double group separately from the single-valued representations and also,
because space-group representations could be constructed from projective representations of
point groups, the enumeration of the complete set of representations of a given space group
should be amenable to this type of analysis.

In practice, a Burnside-type formula was obtained for ordinary space groups by
recognizing that although the total number of irreducible representations was infinite, the
number corresponding to a given set of the arbitrary parameters (i.e. the number of a
particular translational type) was finite and that their dimensions obeyed the formula

D 1A = |Pyl?/IS| = |Pul x | Pgl/|S7] ©)

i=1
where|Py| is the order of the point group of the space groeR,| Pr| is the order of the
point group of the reciprocal space grouf,and|S7| is the order of the stabilizer (or site-
symmetry group)Sz, of a point in the Wyckoff set characterizing the translational stratum
7T to which the particular set of values of the parametets;, r} belongs. Equation (9) was
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obtained by induction and tested for all ordinary space groups. It can be recognized as a
generalization of the original Burnside equation (7) by considering the set of representations
with the full translational symmetry of the lattice. These can always be mapped onto the

point-group representations and, since for the&se= Py, equation (9) maps onto equation

().

The Burnside-like formula for co-representations then follows by replacing the
expression for the sum over the squares of the dimensions of the representations by
the appropriate Wigner-type-dependent combination of sums of the squares of the co-
representations as was used for the magnetic point groups in equation (8):

1 m n
Y 1 D(TIP+ 2D 1D+ 3 Y 1°Dy (TP = | Pl x | Prl/|S7. (10)
a=1 p=1 y=1

The choice of the right-hand side to be the second of those given in equation (9) is heuristic.
Note that in magnetic space groupg%;| is not necessarily equal t@y| as in the case of
ordinary space groups and hence equation (10) cannot be simplifi@g &y |S7| as in the

case of equation (9).

It turns out that this adaptation of Burnside’s theorem is more than just a way of checking
that no co-representation has been omitted or counted twice from each stratum because there
is only a limited number of ways of satisfying the Diophantine equation (10) and there is
therefore only a limited number of patterns of co-representations which can occur. Given
that b- and c-type co-representations must be of even dimension, the weighted sums of
squares of the dimensions of the and b-type co-representations must each be a sum of
squares of natural numbers while the corresponding sum foe-thpe co-representations
must be twice such a sum of squares of natural numbers. In practice, no example exists of
two different Wigner types of co-representation existing in the same stratum for all of the
triclinic, monoclinic and orthorhombic groups and no example of a stratum containing all
three different Wigner types has been found. The Diophantine solutions to equation (10)
have been found for the cases when the right-hand side is 1, 2, 3 or 4 and will be published
elsewhere [32].

5. lllustrative examples

Two examples of character tables of full-group co-representations of black-and-white space
groups are given which illustrate how the above theory may be applied. For simplicity
the examples are restricted to single-valued co-representations but there is in principle no
difficulty in extending the results to double-valued co-representations.

5.1. Example 1C3,(C3) = Pc2/m =1l {5

This is a black-and-white group of considerable practical importance as the symmetry group
of the a-phase of solid oxygery-O,. This phase is stable fno 0 K to 23.876 K at which
temperature a second-order transition to fhphase takes place. This transition is due to
the anti-ferromagnetic ordering being destroyed by the thermal motion. This is, however,
restricted to motion of the molecules about an axis or in a plane until 43.818 K when a
first-order transition to the-phase takes place. At 54.39 K the solid melts.

The first symbol for the magnetic group is a Scheenflies-type notation of theGg##)
showing that the non-magnetic subgrougHis= C3, = P2/m and that the isomorphic non-
magnetic group i€ = Cgh = C2/m. Since the point groups @ andH are the samef! is
a klassengleichsubgroup ofG and hence the magnetic grod is of klassengleichéype.
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The second symbol is an adaptation to magnetic groups of the international notation [29, 30]
in which the lattice symboP- denotes a black-and-white lattice while the point-group part,
2/m, being unprimed, indicates that the occurrence of the time inversion is connected with
the translations rather than with the particular point-group elements. In the third symbol the
Cyrillic letter Il invokes the alternative name ‘Shubnikov groups’ for magnetic groups [33]
and the numerical subscript and superscript are defined in the original enumeration [29, 30].

The groupG is the holosymmetric, symmorphic, side-centred monoclinic space group,
C3,, while the subgrougH is the holosymmetric, symmorphic, primitive monoclinic space
group, C3,. The relationship between these two groups is often regarded as a ‘decentring’.
The auxiliary group is then given by equation (6) as isomorphicHtcand hence the
reciprocal space group is al€t}, (line 5 of table 2).

The first Brillouin zone is chosen as a primitive monoclinic unit cell and is the same for
the magnetic grouie’, (C3,) and the auxiliary non-magnetic grof}, since both groups
have a common reciprocal space graty.

The characters of the co—representationfgf(czlh) are given in table 8. The method
adopted for storing the information is similar to that used for ordinary space groups [34, 35].
The elements of the group are presented in the form of a coset decomposition with respect to
the translational subgroup. Only one representative of each coset is given and Seitz notation
[36] is used. For convenience the point-group parts of the elements are noted above each
entry and the anti-unitary cosets can be identified by the presence of the time inversion
The dimensions of the co-representations are given by the numerical factors in the column
corresponding to the coset of pure translations, i.e. the first column of the main part of the
table.

The full-group characters are given in terms of functions (denoted)kyf primitive
translationsv,, v, and v, which are invariant under the action of point-group operations
and can be written as follows:

Iz = (=1)* Ip = (=™ Iy = (=™

Ic = (=D)"* Ip = (=1»**

IA — (_1)v(-+vx IE — (—l)U*+v}‘+vf

Iy = cos Zrpv, Iw = (—=1)"™ cos 2Zrpv,

Iy = (=1)" cos Zrpvy Iy = (—1)"*" cos Zrpu,

Ir = o827 (pv; + quy)} I = (=)™ coq2n (pv, + qu,)}

Ip = %[COS{ZH(PU)( +qvy +rv,)} + cog 2 (pvy — quy + 1V )}]. (11)

This set of invariant character functions is common to all magnetic space groups of the
arithmetic class 2n Pc, i.e. the groupsPc2/m, Pc21/m, P2/c and Pc21/c, and to the
other 12 magnetic arithmetic crystal-classes of space groups whichjave P2/m as
reciprocal space group (cf table 2).

The character functions which are not invariant to the point-group elements are denoted
by other letters of the alphabet including accents and primes to give sufficient variety:

gy =COS2tp(uy +3)) iy = (~1)* cOS2mp(vy + 3))

U;/ = cos[2t{pv, + q(v, + %)}]

Jy, = %[COS[ZH{F(UX + :’2L) +q(vy + %) + rv,] + cos[2t{p(v, + %) — gy + %) 4ol
(12)

The strata of irreducible co-representations are listed in the left-hand column of the
main part of the character table and individual irreducible co-representations are obtained
by choosing specific values for such variable paraméierg, r} as may occur. Inequivalent
co-representations within a stratum are labelled with the same capital letter and the sequence
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Table 8. Character table of 3, (C3,) = Pc2/m = 1143,

Cgh (C%h) E C2 SZ On 0 9C2 652 90’;,
————e ——— P —— —_——— ———— ——— ——
Pc12/ml {xyz|0OQ}  {£yz|00O} {¥yz|000}  {xyz|000} O{xyz|330} O{Fyzl330) O{¥3Z[330} O{xyz|530}
ary 1 1 1 1 1 1 1 1
arf 1 -1 1 -1 1 -1 1 -1
“ary 1 1 -1 -1 1 1 -1 -1
ary 1 -1 -1 1 1 -1 -1 1
€Z1 2l 21y 0 0 0 0 0 0
°Zy 21y —2Iy 0 0 0 0 0 0
aBf Ig Ip Ip Ip Ip Ig Ip I
“By Ip —Ip Ig —Ip Ig —Ip I —Ip
“By Ig Ip —Ip —Ip Ip Ig —Ip —Ip
“By Ip —Ip —Ip Ip Ip —Ip —Ip Ip
°y; 2ly 0 0 2y 0 0 0 0
Yy 2y 0 0 —2Iy 0 0 0 0
ect 2I¢ 0 2I¢ 0 0 0 0 0
°Ccy 2lc 0 —2I¢ 0 0 0 0 0
“Dy 2Ip 2Ip 0 0 0 0 0 0
°D; 2Ip —2Ip 0 0 0 0 0 0
€Az 21, 0 0 2, 0 0 0 0
€Az 214 0 0 =214 0 0 0 0
‘Ef 21 0 2 0 0 0 0 0
CEy 2 0 —2Ig 0 0 0 0 0
“A1(p) 2In 215 0 0 2%y 2gy 0 0
“A2(p) 21y =21, 0 0 2, —2g, 0 0
“Wi(p) aly 0 0 0 0 0 0 0
“Vi(p) 2ly 2ly 0 0 2iy pir 0 0
“Va(p) 2ly =2ly 0 0 2, —2ii,, 0 0
cUx(p) ALy 0 0 0 0 0 0 0
“F1(p.q) 2l 0 0 2p 20y 0 0 i
“Fa(p,q) 2Ip 0 0 21 207 0 0 —20;
“Gi1(p,q) 4l 0 0 0 0 0 0 0
“O1(p.q.r) 4lo 0 0 0 4J, 0 0 0
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of co-representations is specially chosen to be that of the Wyckoff sets of points in the
reciprocal space group. This also facilitates the identification of the stabilizers of each
stratum since the site symmetry groups of Wyckoff sets are available in all editions of
International Tableq20, 23,24]. The orbits are labelled in accordance with the standard
notation [11,12,14,17]. The pre-superscriptsb and ¢ denote the Wigner type of the
co-representations while the numerical subscripts label the inequivalent co-representations
within a given translational stratum. The post-superscripts and ‘—' are used in
centrosymmetric groups to distinguish between the even and odd symmetry of the co-
representations under space inversion.

The trivariant translational stratum in table @(p, ¢, r), corresponds to the Wyckoff
set, labelledo, which is the set of points with trivial site-symmetry in direct space. This
describes a set of general points in the first Brillouin zone and classifies an orbit of general
co-representations [37]. The divariant translational strata, lab&ligdg) andG(p, g), are
classified by the Wyckoff sets of points andn, respectively, which describe two families
of planes. The univariant strata,(p), W(p), V(p) andU (p), are, respectively, classified
by Wyckoff setsi, j, kK and! which correspond to lines in the Brillouin zone. Since these
lines are not located at the intersections of symmetry planes they are referred to as isolated
lines of symmetry which in this case are twofold axes of symmetry. The remaining strata,
I'Z,B,Y,C, D, AandE, have no degrees of freedom and are classified by special points
in the Brillouin zone corresponding to Wyckoff poinisto i, respectively.

Comparison with the little-group character tables of Miller and Love [12] shows good
agreement for the invariant and univariant strata of irreducible co-representations except
where they omitted the little-group analogues of the divariant stfata, ¢), F>(p, ¢) and
G1(p, g) and the trivariant straturhO1(p, g, r).

5.2. Example 2C;(C3) = P4 = IlI3,

This is a group ofellengleicheype in which the group& andH are both space groups only
having pure rotations, translations and their combinations. Neither group is centrosymmetric
and, according to equation (5), the auxiliary groujs S}szl. It is a self-reciprocal group
(line 3 of table 4) and also lacks a centre of symmetry. Hence the Brillouin zone for both
groupsS; andC(C3) has no centre of symmetry and can be chosen as a primitive tetragonal
unit cell. Its special symmetries are characterized by the eight Wyckoff strata of sets of
points of the reciprocal groug;. The character table is given in table 9.

A general set, labelled:, classifies the stratum of the general co-representations
O(p, q,r) which are also of Wigner type. The Wyckoff sets, f andg classify lines in
the Brillouin zone. The corresponding univariant translational sthai@, V (p) and W (p)
contain co-representations of Wigner type The sets, b, ¢ andd classify points in the
Brillouin zone and correspond to the invariant strBtaZ, M and A.

Miller and Love [12] give four additional little-group co-representations of Wigner type
c labelled by the pointst and R with coordinateg030) and (03 3), respectively. However,
X and R belong to the line labelling the stratufi(p) and are not special points in the
appropriate Brillouin zone since they are not located at the intersections of lines of symmetry
with another line or plane of symmetry. The co-representations in question are generated
by puttingp =0 andp = % in “W1(p) and“W,(p). Hence inclusion oX and R produces
extraneous entries because the Brillouin zone used in [12] belongs to the holosymmetric
groupCj, which has additional Wyckoff orbits and f corresponding to the point§ and
R. This also causes extraneous entries to occur in the little-group character table of the
irreducible representations 6f.
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Table 9. Character table of3(C) = P4 = IIl3;.

CH(CH E Co 0Cy4 0cs
P& {xyz|000]  {£9z/000 §{7xz|000 O{yiz|000
ary 1 1 1 1
br, 2 -2 0 0
az, Iz I7 I7 I7
bz, 21, —2I 0 0
apMy Iy Iy Iy Iy
bM, 21y —2Iy 0 0
aAq Ia Ia Ia Ia
bA, 214 —21, 0 0
CAl(p) 21/\ 2]/\ O 0
CAZ([J) 21A —ZIA 0 0
“Vi(p) 2Iy 2Iy 0 0
CVZ([)) 21\/ —21\/ 0 0
“Wi(p) 2Iw 2Iy 0 0
CWQ([)) 21W —ZIW 0 0
cO1(p,q,r) 4o 0 0 0

The invariant functions occurring in table 9 are

I = (=)™ Iy = (=D>+> Iy = (=D»Fote

Iy =cosZrpv, Iy = (=" cosZpu,

Iy = J{(=D" &7 + (~DUe )

Ip = 3[cos{2m (pu, + qvy)}€™" + cog2m (pv, — qu,)}e 7] (13)

and are the same for all non-magnetic and magnetic space groups belonging to the arithmetic
crystal classedP, 4 P and 4/m’ P characterized by the reciprocal space greyp

Another noteworthy feature is the presence of two different Wigner types of co-
representation in the same stratum. This never occurs in triclinic, monoclinic or
orthorhombic magnetic space groups. The number of inequivalent types of irreducible
co-representations contained within each translational stratum is checked using the Burnside-
type analysis and the results are given in table 10. Tables such as this are also useful in
recognizing which strata of co-representations are related by outer automorphisms of the
magnetic group [38]. Two strata can only be regarded as possibly affinely equivalent if the
entries for these tables are identical.

6. Conclusions

The concept of the reciprocal space group is particularly useful because it sets the
classification problems of irreducible space-group representations and co-representations
on a common basis. It explains the special symmetries in the Brillouin zones
of both non-magnetic and magnetic crystals and provides a systematic method for
classifying, enumerating and labelling both space-group representations, magnetic-group
co-representations and the corresponding wavefunctions and energies. It contributes
significantly to the classification of space groups themselves as it characterizes an arithmetic
crystal-class of non-magnetic space groups and a number of arithmetic crystal-classes of
magnetic space groups.

The extension of the Burnside rule to co-representations adds a very convenient check
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Table 10. Burnside-type analysis fo€3(C3) = P4 = lI13,.

Wyckoff  Stabilizer

Stratum S D2 IS PDi2 1Y D2 Sum  label S |ST] %
r 1 1 0 2 a 4=5, 4 2
Z 1 1 0 2 b 4=8, 4 2
M 1 1 0 2 c 4=S8, 4 2
A 1 1 0 2 d 4=8, 4 2
A(p) 0 0 4 4 e 2=Cy 2 4
V(p) 0 0 4 4 f 2=0C, 2 4
W(p) 0 0 4 4 g 2=Cy 2 4
O(p,q,r) O 0 8 8 h 1=C, 1 8

on the completeness of any enumeration of the co-representations belonging to each
translational type and shows how the Burnside rule can be applied to a class of finitely-
generated groups of infinite order.
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